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Abstract 

Melanoma and some other cancers identified with high fatality rates which are highly radio and 

chemotherapy resistant yet may be very immunogenic. These factors have showed to a current surge in 

research into therapies focusing to boost anticancer immune responses in patients. Beside these 

therapies, neutralizing antibodies targeting the immune checkpoints cytotoxic T-lymphocyte associated 

protein 4 (CTLA-4) and programmed cell death protein 1 (PD-1) are being approached as specifically 

successful. Although, the most of advanced stage melanoma patients ignore, and the search for the 

“magic bullet” to treat the disease continuously. Anti-PD-1/PD-L1 and anti-CTLA-4 antibodies are the 

two types of checkpoint inhibitors currently available to melanoma and other cancer patients. 
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Introduction 

In present days, there has been a step forward towards the implementation and improvement 

of cancer immunotherapies. The approval of anti-PD-1/PD-L1 and anti-CTLA-4 antibodies 

for human use has already reported in considerable improvements in disease outcomes for 

several types of cancers, generally melanoma [1]. Radiotherapy and chemotherapy focus to 

directly interfere with cancer growth and survival, whereas immunotherapies target cancer 

indirectly through boosting the anticancer immune responses that are already existing in 

several cancer patients [2]. 

Acknowledge the manner of activity of immune checkpoint blockers, it is significant to 

appreciate the active interplay between the immune system and cancers in the time of the 

disease. Cancer cells are genetically abnormal, contributes to their uncontrolled proliferation 

and the antigens expression that may be recognized through the immune system [3]. These 

antigens involve general proteins overexpressed through cancer cells and novel proteins that 

are created through gene rearrangement and mutation. Cytotoxic (CD8+) T-cells are immune 

cells that are specifically effective at moderating anticancer immune responses [4].  

These immune cells can recognize the cancer-associated antigens expressed on major 

histocompatibility complex (MHC) class I molecules, proceeding to cancer cell killing. CD8+ 

T-cells become authorized effector cells after appropriate activation through antigen 

presenting cells (APCs) that have engaged with antigens at the cancer site [5]. Besides the 

antigen presented on the MHC molecules, APCs must produce costimulatory signals by 

surface receptors (such as CD28) and cytokines like interleukin (IL)-12 for effective T-cell 

stimulation [6]. Cancer cells accept a range of mechanisms to evade immune recognition and 

mediated destruction. Expected cancers are often believed to arise by the selection of clones 

that are capable to avoid the immune system, a process called as immunoediting [7]. 

Cancer cells may avoid immune recognition directly through downregulating characteristics 

that make immune cells defenseless, like MHC class I or cancer antigens. Moreover, cancers 

can avoid immune responses through taking advantage of negative regulations that the body 

has evolved to prevent immunopathology [8]. These involve inhibitory cytokines like IL-10, 

Transforming growth factor-β (TGF-β), and also inhibitory cells like regulatory T-cells and 

B-cells, myeloid derived suppressor cells, metabolic regulators like indoleamine 2,3-

dioxygenase, and inhibitory receptors like CTLA-4 and PD-1 [9]. 

 

 International  Journal  of  Pharmacy and Pharmaceutical  Science  2024; 6(1):  10-19 

 

www.pharmacyjournal.org
https://doi.org/10.33545/26647222.2024.v6.i1a.75


 

~ 11 ~ 

International Journal of Pharmacy and Pharmaceutical Science https://www.pharmacyjournal.org 
 

Immune depletion and dysfunction in cancer 

Immune checkpoints and their ligands may be expressed on 

a variety of cells. They are necessary for central and 

peripheral tolerance in that they prevent concurrent 

activating signaling by co-stimulatory molecules. Inhibitory 

receptors can react during both immune activation and 

ongoing responses [10]. At specific time of chronic 

inflammation, T-cells are called to become exhausted and to 

upregulate a broadly various of non-redundant inhibitory 

receptors that limit their efficaciousness, like CTLA-4, PD-

1, T-cell immunoglobulin and mucin domain 3, lymphocyte 

activation gene 3, or T-Cell immunoreceptor with 

immunoglobulin domains (Table 1) [11].  

 
Table 1: Summary of T-cell receptors linked with immune inhibition 

 

Receptor Expressing cells Ligands Ligand-expressing cells 

CTLA-4 CD4, CD8, cancers CD80, CD86 APCs 

PD-1 
CD4, CD8, B-cells, mast cells, 

monocytes, Langerhans cells 
PD-L1, PD-L2 APCs, CD4+ T-cells, cancers 

LAG-3 CD4, CD8, NK cells MHC II APCs, cancers 

TIM-3 
CD4, CD8, NK cells, DCs, monocyte, 

macrophage 
Galectin-9, phosphotidyl serine Endothelial cells, apoptotic cells, cancers 

 

In the situation of chronic viral infections, where the host 

failures to clear the pathogens, it is now observable that 

exhausted T-cells may occur in cancer. It is thought that, 

under these circumstances, persistent high antigenic load 

shows to the T-cells upregulating the inhibitory receptors, 

which signaling eventually shows to a progressive 

proliferative potential loss and effector functions or in some 

instances to their deletion [12]. Physiological functions 

happening to limit immunopathology during persistent 

infection and barrier for anticancer immune responses, leads 

to immune cells exhaustion. While expression of inhibitory 

molecular markers is not always an indication of immune 

exhaustion, the receptors can be expressed alone during 

normal immune responses [13]. 

 

CTLA-4 immune checkpoint receptor  

The ipilimumab, CTLA-4 inhibiting antibody was the first 

immune checkpoint blocker to be examined and authorized 

for the treatment of cancer patients. As a B7/CD28 family 

member, CTLA-4 (CD152) that prevents T -cell functions. 

It is fundamentally presented through Tregs, however may 

be upregulated through other T-cell subsets, generally CD4+ 

T-cells activation [14]. Exhausted T-cells are often featured 

through the expression of CTLA-4 between another 

inhibitory receptors. CTLA-4 is commonly situated in 

intracellular vesicles and temporarily presented upon 

activation in the immunological connection before being 

quickly endocytosed [15].  

CTLA-4 mediates immunosuppression through indirectly 

declining signaling by the co-stimulatory receptor CD28. 

While both receptors bind to CD80 and CD86, CTLA-4 

does so with much greater affinity, beneficially 

outcompeting CD28 [16]. CTLA-4 can flush CD80 and CD86 

(involving cytoplasmic domains) from the cell surfaces of 

APCs through trans-endocytosis, hence decreasing the 

availability of these stimulatory receptors to other CD28 

presenting T-cells. In fact, this process is a significant 

mechanism through which Tregs mediate immune 

suppression on neighboring cells [17].  

Through arresting CD28 mediated signaling during antigen 

presentation, CTLA-4 rises the activation threshold of T-

cells, lowering immune responses to weakly antigens like 

individual and cancer antigens. The intermediate role that 

CTLA-4 plays in immunological tolerance is represented 

through trials in rats that deficit the CTLA-4 gene globally 

or particularly in the FoxP3+ Treg compartment [18]. These 

creatures develop lymphoproliferative disorders and be lost 

at an immature stage. Likewise, polymorphisms in the 

CTLA-4 gene are linked with autoimmune diseases in 

humans. CTLA-4 signaling has been seen to reactive 

immune responses to infections and cancer cells [19]. 

 

PD-1 immune checkpoint receptor  

The receptor PD-1 (CD279) was earliest found on a murine 

T-cell hybridoma and believed to be responded in cell death. 

However, it has become clear that PD-1 is homologous to 

CD28, which is firstly included in inhibitory immune 

signaling and also significant enhancer of adaptive immune 

responses [20]. In humans and rats certain T-cell populations 

constitutively present PD-1, such as follicular helper T-cells. 

While most of circulating T-cells don’t express the receptor, 

they can be introduced upon stimulation by the T-cell 

receptor or interleukins exposure (IL-2, IL-7, IL-15, IL-21) 

and transforming growth factor-β [21].  

Further immune cells like B-cells, myeloid dendritic cells, 

mast cells, and Langerhans cells may express PD-1 to 

balance their individual and passerby cell functions under 

pathophysiological situations [22]. PD-1 has two ligands [PD-

L1 (B7-H1; CD274), PD-L2 (B7-DC; CD273)], which may 

be expressed on the cell surface of APCs (like dendritic 

cells, monocytes, and macrophages), nevertheless otherwise 

diversely presented on different non-lymphoid tissues. 

Interferon-γ (IFN-γ) is the major trigger investigated to 

cause PD-L1 and PD-L2 upregulation [23]. 

PD-1 carries an immunoreceptor tyrosine-based inhibition 

and switch motif on its intracellular tail. The intracellular 

signaling incidents started upon PD-1 engagement in T-cells 

(Fig. 1) [24]. Due to engagement of PD-1, tyrosine residues to 

become phosphorylated and initiating an intracellular 

signaling cascade that interferes the dephosphorylation of 

TCR proximal signaling components. In the attendance of 

TCR stimulation, CD28 has produces critical signals that are 

significant for T-cell activation and recently noticed that to 

be primary target [25]. 
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Fig 1: PD-1 mediated intracellular signaling incidents during T-cell activation 

 

Through disrupting primary TCR/CD28 signaling and 

related IL-2 dependent positive feedback, PD-1 signaling 

leads to lowered cytokine production (IL-2, IFN-γ, TNF-α), 

cell cycle improvement, and decreased expression of the 

transcription factors included in effector functions [26]. PD-1 

activity is only related in simultaneous T-cell activation, as 

its signal transduction may only induce effect during TCR 

dependent signaling. Investigation of PD-1 signaling in 

other cells that carries this surface receptor, like B-cells, 

hold on to be resolved [27]. 

PD-1 is critical for the peripheral tolerance maintenance and 

containing immune responses to evade immunopathology. 

The receptor primarily appears well, however create 

autoimmune diseases like arthritis with age, lupus 

proliferative glomerulonephritis and exacerbated 

inflammation during infections. Humans with genetic 

polymorphisms in the PD-1 locus have raised possibility of 

developing several autoimmune diseases [28]. 

 

CTLA-4, PD-1/PD-L1 and their ligands  

CTLA-4 can be presented in cancer lesions on infiltrating 

Tregs or exhausted normal T-cells and individual cancer 

cells. In spite of the immunosuppressive character of CTLA-

4, its relation with disease prognosis is unclear [29]. 

Moreover, it should be reported that only some minor 

investigations have illustrated the prognostic value of 

CTLA-4 levels in the cancer locate. PD-1 may be 

upregulated transiently during stimulation or fundamentally 

during chronic immune activation [30].  

The inhibitory receptor has been investigated on both 

circulating cancer specific T-cells and cancer infiltrating 

lymphocytes, it was led with lowered T-cell function 

showed in humans and rats. For instance, PD-1 positive 

dendritic cells have been reported in hepatocellular 

carcinoma where they showed a decreased capability to 

stimulate T-cells [31]. Further investigation reported a 

population of cancer infiltrating PD-1 expressing regulatory 

B-cells that released IL-10. higher amounts of these cells 

were coordinated with unsatisfactory disease outcome in 

hepatocellular carcinoma patients. Cancer related 

macrophages were recently seen to present PD-1 in both 

human and rat with colorectal cancer and to decrease 

phagocytosis [32].  

Cancer cells and cancer infiltrating immune cells like 

macrophages can present PD-L1 and upregulate it in 

response to IFN-γ. PD-L1 expression can be sign of active 

anticancer immune responses and actively provide to normal 

immunosuppression [33]. The relation between PD-1 or PD-

L1 expression at the cancer location and disease outputs is 

thus not compatible beside all cancers and patients. PD-1 or 

PD-L1 can relate with deficient prognosis in certain cancers 

(involving melanoma, renal cell carcinoma, esophageal, 

gastric, and ovarian cancers) and with bettered prognosis in 

others (like angiosarcoma and gastric cancer) [34]. 

 

Effectiveness and action mechanism of checkpoint 

blockers 

CTLA-4 and PD-1 immune blockers have reported in 

improved patient survival in a number of investigations 

(involving melanoma, renal cell carcinoma, squamous cell 

carcinoma, and non-small cell lung cancer) when compared 

to normal chemotherapies (Table 2). Anti-PD-1 treatment in 

melanoma was more helpful with smaller cancers patients 
[35]. Comparison between the two checkpoint blockers in a 

Phase III trial showed significant response and survival rates 

(44% and 6.9 months) beside patients introduced with the 

anti-PD-1 nivolumab than other those administered with the 

anti-CTLA-4 ipilimumab (19% and 2.8 months) [36]. 
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Table 2: Treatment conclusion of clinical trials for immune checkpoint blockers in several cancers 
 

Target Drug Condition 
Treatment 

regimen 

Overall 

survival 

Progression free 

survival 

Grad 3-5 

adverse events 

Participants 

treated 

PD-1 

Nivolumab 

(IgG 4a) 
Melanoma 3mg/kg/2w n/a 6.9 16.3% 316 

Pembrolizumab 

(IgG 4a) 

Merkel cell 

carcinoma 
2mg/kg/3w n/a 65% (6 month) 15% 26 

Pidilizumab 

(IgG 1) 
B-cell lymphoma 1.5 mg/42 days 

85% (16 

month) 
72% (16 month) n/a 66 

PD-L1 
Atezolizumab 

(IgG 1) 

Non-small cell lung 

cancer 
1200 mg/3 w 15.7 2.8 15% 425 

CTLA-4 

Ipilimumab 

(IgG 1) 
Melanoma 

10 mg/kg + 

decarbazine 
11.2 n/a 56.3% 250 

Tremelimumab 

(IgG 2) 
Melanoma 15 mg/kg/90 days 12.6% 20.3% 52% 328 

Combine 

therapy 

Nivolumab + 

Ipilimumab 
Melanoma 

3 mg/kg/2 w + 3 

mg/kg/3 w 
n/a 11.5 55% 314 

 

Dual introduction of nivolumab and ipilimumab investigated 

in even higher response and survival rates (58% and 

11.5 months). CTLA-4 and PD-1 react individually as slows 

down CD3/CD28 dependent signaling, recommending that 

primary immune responses are required for checkpoint 

blockers treatment to take result [37]. In fact, both CTLA-4 

and PD-1 inhibitions are more significant in cancers that are 

invaded through T-cells or that have high mutation rates and 

more immunogenic earlier to treatment. The direct 

immunological effects of anti-CTLA-4 and anti-PD-1 

treatments have primarily been explored in T-cells 

(Figure 2) [38].  

 

 
 

Fig 2: The role of CTLA-4 and PD-1 in the priming and effector phases of anticancer immune responses 

 

The inhibition of CTLA-4 favorable possible effects the T-

cell activation stage in the clearing lymph nodes when 

CTLA-4 presenting Tregs withdraw CD80/CD86 from the 

surface of APCs, while lowering their capacity to 

significantly stimulate cancer particular T-cells. CTLA-4 

inhibition can take impact at the cancer location as 

exhausted CTLA-4 introducing T-cells and Tregs can gather 

in the cancer microenvironment [39]. PD-1 presenting cancer 
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infiltrating T-cells may be impaired through PD-L1 on the 

cells surface of cancer or further infiltrating immune cells. 

Inhibiting antibodies targeting PD-1 signaling are viewed to 

generally affect the effector step of the immune response 
[40].  

Further cells like dendritic cells and B-cells may be affected 

through PD-1 signaling, the PD-1/PD-L1 blockade pathway 

can also have T-cell independent impacts, whose effect on 

immune responses during checkpoint blockade therapy left 

to be illuminated. Type I immune responses involve IFN-γ 

secretion and cytotoxic T-cell functions are essential for 

active anticancer immune responses [41]. They are related 

with superior responses to anti-CTLA-4 and anti-PD-1 

treatments. Recently, mouse models have experienced that 

common IFN-γ upregulation is preferable for anti-PD-1 

mediated cancer regression. IFN-γ and the cytotoxic granule 

component granzyme B were raised in regressing melanoma 

patient trauma after anti-PD-1 treatment [42].  

Patients with cancers introduced with anti-PD-1 who 

primarily responded. Investigated mutations that led a 

consecutive loss in MHC I surface expression to evade 

cytotoxic T-cell expression or in IFN-γ response elements. 

Th9 CD4+ T-cells have been recommended to conduct a role 

according to a present evaluation that exposed a rise in Th9 

cell occurrence in patients acknowledging to anti-PD-1 

treatment [43]. It can be appealing to suspect that immune 

checkpoint blockers particularly improve the T-cells 

function belonging to the effector memory compartment. 

These cells normally present cytotoxic molecules (like 

perforin and granzyme B). Hence, these cells insufficient the 

co-stimulatory receptor CD28 by which both CTLA-4 and 

PD-1 block T-cell function [44].  

Present investigations have seen that it is certainly CD28 

expressing cells alternative previously lethally differentiated 

effector cells that lead to PD-1 inhibition with a proliferative 

burst and differentiation. The features of a cancer itself can 

also impact immune checkpoint blocker efficiency. The 

mutational nature of cancer cells can increase their 

antigenicity, however can boost their capacity to provoke 

treatment introduced immune responses [45]. A present 

investigation explored a melanoma gene signature related 

with innate anti-PD-1 resistance, involved upregulation of 

genes led with angiogenesis, wound healing, cell adhesion, 

mesenchymal transitioning, and extracellular matrix 

remodeling. Symbiotic bacteria can also contain a key role 

in impacting the efficiency of immune checkpoint blockers 
[46].  

Anti-CTLA-4 treatment was showed to be ineffectual in rats 

raised under sterile conditions and to introduce a shift in the 

gut flora of generally raised rats. Experiments evaluated that 

the reveal of several bacterial strains, in specific Bacteroides 

fragilis, promoted Th1 polarization in the mammals and was 

led with boosted anticancer immune response [47]. Antibiotic 

treatment was also correlated with lowered responses to 

anti-PD-1/PD-L1 treatments in cancer patients, which is 

feasibly through changing the normal gut flora. Favorable 

treatment response among patients was rather connected 

with the presence of the symbiotic bacterial supplement, 

which boosted anti-PD-1 treatment responses in rats through 

permitting raised availability of CCR9+ CXCR3+ CD4+ T-

cells into the cancer [48]. 

 

Unfavorable therapeutics events and their supervision 

CTLA-4 and PD-1 arrest autoimmunity and restrict immune 

activation block passerby damage under physiological 

conditions. Blockade of these receptors by therapeutic 

antibodies for the treatment of cancer is connected with a 

wide variety of side consequences that favor autoimmune 

reactions. Rates of acute side effects differ greatly through 

investigation and treatment (Table 2) [49]. Clinical trials that 

directly compared various types of immune checkpoint 

blockers and their combination reported that more patients 

explored side effects when introduced with anti-CTLA-4 

(27.3%) compared to anti-PD-1 (16.3%). Even more 

patients were impressed when introduced with a 

combination (55%) [50].  

Most of the patients introduced with immune checkpoint 

blockers undergo diarrhea, fatigue, pruritus, rash, nausea 

and decreased appetite. Critical adverse effects involve 

colitis, raised alanine aminotransferase levels, inflammation 

pneumonitis, and interstitial nephritis. There have been 

patient’s records undergoing increasing of pre-existing 

autoimmune diseases like psoriasis or developing new ones 

like diabetes mellitus (type I) [51]. Specifically acute side 

effects can require treatment interruption, whilst these 

patients can response still thereafter. Amazingly, particular 

treatment associated autoimmune reactions like rash and 

vitiligo have been seen to coordinate with improve disease 

prognosis, recommending an overlap between autoimmune 

and anticancer immune responses [52]. 

 

Anti-CTLA-4 and anti-PD-1 biomarkers treatment 

efficiency  

Molecular markers are required both before and during 

treatment to recognize the patients most or small possible to 

respond to immune checkpoint blocker treatments in order 

to lower unsuitable drug disclosure. Treatment response is 

defined as a decrease in cancer population during the 

treatment trail [53]. The factors related in disease prognoses 

with untreated patients are connected to checkpoint blocker 

response rates (Table 3). For instance, patients with smaller 

cancers or low serum lactate dehydrogenase (LDH) levels at 

baseline have a superior prognosis and more expected to 

reply to anti-PD-1 treatment [54].  

 
Table 3: Molecular biomarkers analogous with positive responses to immune checkpoint blockers 

 

 Pre-treatment Post-treatment 

Cancer 
Cancer size and distribution 

PD-L1 expression on Cancer cells 
Reduction in Cancer size 

Cancer infiltrating immune cells 
CD8+ T-cells inside the cancer or margin 

PD-L1 expression by infiltrating cells 
Proliferation of intra- cancerous CD8+ T-cells 

Circulation 

High relative lymphocyte count 

High relative eosinophils count 

High serum TGF-β levels 

Low serum LDH level 

Low level of ccDNA 

Increased levels of ICOS+ T-cells 

Low neutrophil to lymphocyte ratio 

High levels of Th9 cells 

A reduction in serum LDH level 

A reduction in ccDNA 
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A depletion in LDH levels after treatment is related with 

bettered response. Circulating cancer DNA (ccDNA) 

contains melanoma alike mutations and may be liberated 

through dead cancer cells to be reported in some patient’s 

serum levels coordinate actively with cancer load and 

progression [55]. A current investigation in advanced stage 

melanoma patients introduced with anti-PD-1 alone or in 

combination with anti-CTLA-4 illustrated high treatment 

response rates in independents that were ccDNA negative 

earlier to or after treatment, creating serum ccDNA an 

fascinating marker before and during checkpoint treatment 
[56].  

For anti-PD-1 treatments, expression of PD-L1 in the cancer 

microenvironment has been an evident biomarker candidate. 

While PD-L1 expression on cancer cells was connected with 

treatment efficiency in melanoma patients, it wasn’t in 

patients with squamous cell carcinoma, Merkel cell 

carcinoma and non-small cell lung cancer [57]. Amazingly, 

investigation evaluating the PD-L1 role in cancer cells and 

infiltrating immune cells showed that only in the concluding 

context was anti-PD-L1 treatment efficacy related with PD-

L1 expression. The neoantigens showing on mutated cancer 

cells enhances anticancer immunogenicity and boosts 

treatment efficiency [58].  

High genetic variance between cancer cells and host cells is 

marker of checkpoint blocker treatment efficiency. This was 

specifically reported in anti-CTLA-4 treated melanoma 

patients whose cancers expressed neo-antigens and likewise 

in anti-PD-1 treated patients with colorectal cancers or non-

small cell lung cancers that were conflict repair defective or 

had high mutation rates. While overall mutational load is 

correlated with enhanced response to anti-PD-1 treatment, 

decreased responses were reported in melanoma patients 

whose cancers presented the IPRES gene identity [59].  

Antigen display through the host can play an important role 

during anti-PD-1 treatment, as patients with the HLA-A*26 

were more than double as possible to reply than patients 

negative for the allele. Further pretreatment immunological 

features related with progressed treatment responses involve 

high eosinophil and lymphocyte blood counts [60]. An plenty 

of CD8+ T-cells infiltrating the cancer or present at the 

cancer outline, and raised serum TGF-β levels in melanoma 

patients introduced with anti-PD-1. Increased Th1 and 

CTLA-4 gene expression levels were reported in responder 

patients with several solid cancers involving melanoma 

treated with anti-PD-L1 [61].  

A several of post-treatment immunological examinations 

have been related with enhanced immune checkpoint 

blocker responses. For instance, patients more favorable to 

respond to anti-CTLA-4 treatment had raised numbers of 

introducible costimulatory molecule displaying T -cells and 

decrease neutrophil to lymphocyte proportions [62]. Rise in 

CD8+ T-cell proliferation in the cancer trauma and raised 

frequency of Th9 cells in the patients’ circulation were 

linked with treatment response. These various investigations 

show that immune checkpoint blockers are most significant 

in patients who already express anticancer immune 

processes earlier to therapy [63].  

Although, some markers suggested here can be unequally 

significant, and patients can quiet reply to treatment against 

contrary biomarker-based forecasts. Additionally, 

examining cancer tissue can be difficult in several patients 

particularly after treatment, and lower intruding blood-based 

“liquid biopsies” can be more suitable [64]. Mostly, it has 

been seen that exploring several biomarkers in combination 

may enhance treatment predictions. While the currently 

found ccDNA looks to be a specifically promising 

biomarker candidate, proper investigations are needed to 

identify more important biomarkers or its combinations to 

develop the most suitable treatment strategy for individual 

patient [65]. 

 

Restriction of immune checkpoint blockers  

While immune checkpoint blocker treatment can be 

primarily valuable, most patients will finally lapse and 

create cancer progression. The selection pressure due to 

checkpoint blocker treatment can lead increase to cancer 

cells that may provoke immuno-mediated recognition and 

elimination by new strategies [66]. Cancer cells from patient 

refractory to anti-PD-1 treatment were recently seen to have 

obtained mutations making them less exposed to T-cell 

mediated killing through loss of IFN-γ response elements or 

MHC class I [67].  

Anti-CTLA-4 and anti-PD-1 treatment can leads to 

upregulation of some inhibitory receptors. For instance, 

patients with melanoma or prostate cancer expressed 

upregulation of the inhibitory receptor V-domain Ig 

suppressor of T-cell activation on several cancer infiltrating 

immune cells after anti-CTLA-4 treatment [68]. Further 

investigation reported the upregulation of the inhibitory 

receptor TIM-3 on the T-cells surface in anti-PD-1 treated 

rats with lung cancer and also TIM-3 upregulation on T-

cells in adenocarcinoma patients refractory to PD-1 

treatment [69].  

Latterly, an investigation disclosed further unpredictable 

resistance mechanism to anti-PD-1 blockade in mice by 

which cancer related macrophages flushed the therapeutic 

antibody from the T-cells surface in vivo, hence leading 

them again sensitive to inhibitory signaling by the receptor 
[70]. This incident could be partly control through 

introduction of Fc-receptor inhibiting agents earlier to 

treatment. A greater recognizing of the mechanisms 

restricting the efficacy of immune checkpoint blockers will 

permit better enhancement of future treatments [71]. 

 

Future prospectus and approach 

CTLA-4 and PD-1 inhibiting agents are ineffective in all 

patients as well as despite who do reply primarily may 

lapse, marking the require for boosted or possible 

treatments. Further inhibitory receptors have been 

recognized that can be targeted for anticancer immune 

therapy [72]. These involving the TIM-3, LAG-3, TIGIT, B-

cell and T-cell related protein receptors connected with T-

cell exhaustion. V-domain Ig suppressor of T-cell 

activation, receptor expressed on cancer infiltrating myeloid 

cells blocking assisted anticancer immune responses in 

murine models and CD96 has been displayed to block 

NK cell activity in murine cancer models [73].  

The anti-CTLA-4 and anti-PD-1 combination treatments 

resulted greater efficiency compared to each introduction, 

although was led with rise in side effects. The tryptophan 

metabolizing enzyme IDO interrupt T-cell function, and 

combining IDO-inhibiting agents together with immune 

checkpoint blockers has reported possible outcomes in rats 

and is also recently ongoing clinical trials in humans. 

Macrophages (phagocytic cell) can also interconnect with 

anticancer immunity or even directly distract therapeutic 

antibodies [74].  
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Their exhaustion by a colony stimulating factor 1 receptor 

blocker is being reported in clinical trials together with anti-

PD-1, after having recorded efficiency in a glioblastoma rat 

model. Anticancer T-cell function administered through PD-

1 inhibition in rats could be enhanced through a targeted rise 

in mitochondrial function. Due to immune checkpoint 

blockers work through eliminating brakes on the immune 

system beside than directly enhancing immune function, 

patients can also advantage from combined 

immunotherapies that involve immunostimulatory 

substances [75].  

For instance, rat melanoma models have investigated that 

the anti-CTLA-4 combine with cytokines like granulocyte 

macrophage colony stimulating factor (GM-CSF) or with 

aggressive antibodies targeting costimulatory receptors like 

CD40, which raised cancer elimination in a symbiotic 

manner. The genetically modified herpes simplex virus is 

planned to replicate in cancer cells and to liberate GM-CSF, 

hence attracting immune cells into the cancer environment. 

The virus has been explored in current clinical trials in 

combine with either CTLA-4 or PD-1 in progressive stage 

melanoma patients, leading in raised treatment response 

rates compared to the individually immune checkpoint 

blockers [76].  

Regulation of the gut microbiome can enhance immune 

checkpoint blocker-based therapies. induction of each 

intestinal bacteria was marked with lowered cancer growth 

in a murine B16 melanoma model through enhancing 

dendritic cell mediated CD8+ T-cell responses. The 

introduction of these bacteria also supplemented to the 

therapeutic impact of anti-PD-1 treatment in these rats. 

Similarly, introduction of B. fragilis to sterile rats managed 

with anti-CTLA-4 led in lowered cancer growth, more 

probably through introducing a possible shift toward Th1 

responses [77].  

Further investigations in humans were capable to connect 

the presence of several bacterium to a possible result to anti-

PD-1 treatment. Together, these detections recommend that 

human patients too can advantage from suitable 

management of their intestinal flora whereas ongoing 

immune checkpoint blocker treatment. A variety range of 

pledging new directions are recently being reported, while 

their clinical efficiency rests to be confirmed by ongoing 

and future clinical trials [78]. 

 

Conclusion 

While CTLA-4 and PD-1 targeting therapies have been 

capable to improve standard life expectation for cancer 

patients, mortality remains high one of advanced stage 

patients, attracting the requiring for some innovation in the 

area. Anti-CTLA-4 and anti-PD-1 therapies emerge to be 

more functional in patients with pre-existing anticancer 

immunity, recommending that patients without such 

immunity, these therapeutics are unfit to intervene 

anticancer immune responses de novo. Although our 

conception of the mechanisms of these therapeutics 

enhances, directions are being opened to boost their 

utilization not only through particularly targeting those 

patients who are most likely to respond by suitable 

biomarker screening methods, but also through coupling 

recently used immune checkpoint blockers with other 

equivalent therapeutics to help those patients unreliable to 

respond to the present administrations. 
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