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Abstract

A solid dosage form is a therapeutic formulation in which the active pharmaceutical ingredient and
excipients are delivered in a stable solid state (e.g. tablets, capsules, powders, granules). These forms
are widely used because they are relatively easy to manufacture, transport, handle, store, and administer
and they tend to improve patient compliance due to convenience and precise dosing. In vitro
characterization of solid dosage form refers to laboratory-based testing of pharmaceutical products like
tablets and capsules to assess their physical, chemical and biopharmaceutical properties. These tests are
critical for ensuring product quality, stability and performance prior to in vivo studies. However,
conventional in vitro methods often face limitations including lack of accuracy, limited precision, poor
reproducibility of in -vivo behaviour which can hinder efficient formulation development and quality
control. Artificial Intelligence [Al] offers transformative potential by optimizing and predicting in vitro
performance of solid dosage forms. Al models can quickly analyse large formulation and test datasets,
find patterns and predict outcomes like dissolution profiles or bioavailability with high accuracy.
Various Al tools and techniques include Machine Learning, Deep Learning, Cheminformatics and
QSAR modelling. This review article elaborates on the fundamentals of in vitro characterization of
solid dosage forms, highlights its limitations, explores the integration of Artificial Intelligence in
addressing these challenges and discusses the tools and technologies that are shaping the future of
pharmaceutical formulation and testing.

Keywords: Al tools, PBPK/PKPD/QSP modelling, regulatory guidance, design of experiments,
organoid Al, In vitro dissolution profile

1. Introduction

Artificial Intelligence (Al) is a promising strategy for enhancing pharmaceutical product
development and has proven to be a versatile tool with algorithms applicable to solid dosage
forms such as tablets, capsules and powders. It plays a significant role in drug discovery,
formulation design, manufacturing, quality control, clinical trial management and drug
delivery [, By definition, Al is a computational process that simulates human intelligence
through machines, a concept first introduced in 1956 at a conference led by Marvin Minsky
and John McCarthy. A typical Al workflow involves four essential steps: data collection and
preparation, Al modelling, simulation and testing and final deployment. Deep Learning
(DL), a more advanced subfield of ML (Machine Learning), is based on layered algorithms
known as Artificial Neural Networks (ANNSs) 2. These networks, inspired by the biological
neuron structure of the human brain, demonstrate superior computational power and
predictive accuracy compared with conventional ML models. Solid dosage forms typically
consist of one or more APIs combined with suitable excipients, including binders,
disintegrants, stabilizers, antioxidants and granulating agents. The development of solid
dosage forms is a highly complex process that requires an in-depth understanding of
physicochemical characteristics and pharmacokinetic/pharmacodynamic (PK/PD) profiles. It
generally involves several stages, such as preformulation studies, product development and
large-scale manufacturing 41,
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It is simply a data analysis method that automates analytical model building using
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Fig 1: Artificial Intelligence in drug development

2. Challenges in conventional in-vitro methods of solid
dosage forms

A drug's effectiveness in oral therapy relies primarily on its
solubility and permeability, which govern absorption,
bioavailability and therapeutic outcome. For solid dosage
forms, dissolution in gastrointestinal fluids is the critical
first step toward absorption. Insufficient solubility often
leads to poor or variable bioavailability . Drugs that are
highly hydrophilic or structurally bulky face challenges in
crossing the intestinal epithelium. It is estimated that about
40% of marketed drugs and nearly 90% of pipeline
candidates exhibit poor aqueous solubility. These limitations
create significant hurdles in developing efficient oral solid
dosage forms. The traditional trial-and-error strategy for
formulation development is therefore slow, resource-
intensive, and inefficient. Developing PDDS and accurately
predicting their release profiles is challenging because of
their complex structures and multiple influencing factors,
while conventional mathematical and empirical methods fall
short in addressing these complexities €. In vivo
bioequivalence (BE) studies are essential to establish
equivalence between generic and innovator products, but for
highly variable drugs, direct testing in subjects often carries
a high risk of failure "1,

3. Al tools for in vitro characterization
Growing collaborations between artificial intelligence (Al)-
driven and machine learning (ML)-focused organizations

and pharmaceutical companies are significantly streamlining
and advancing the drug development process (Jiang). In this
study, the following software tools were employed: DD
Solver (Dissolution Data Analysis Software Solver, an
Excel add-in for both model-dependent and model-
independent dissolution analysis), Design-Expert (for
experimental design and optimization), Gastro Plus (for
physiologically based pharmacokinetic and pharmacokinetic
simulations), and MATLAB (Matrix Laboratory, a high-
level computing environment for data analysis, modelling,
and simulation) [,

Dissolution profile comparison was performed using the
similarity factor (f2), expected similarity factor (f>, exp), and
bias-corrected similarity factor (f»,bc). The f. factor
quantifies the similarity between test and reference profiles,
with values of 50-100 indicating equivalence. The f>, exp
provides an adjusted estimate accounting for variability
across multiple dissolution tests, while f>, bc incorporates
bootstrapping methods to correct for bias in highly variable
data. These parameters were calculated using DD Solver,
Bootf2BCA (Bootstrap f> Bias-Corrected and Accelerated, a
resampling-based method for reliable f. estimation), and
PhEq_bootstrap (Pharmacokinetic/Pharmaceutical
Equivalence Bootstrap, a tool for assessing equivalence of
dissolution profiles with variability considerations). DD
Solver was further applied for model-dependent kinetic
analyses [,
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Fig 2: Drug product development in collaboration with Al and pharmaceutical companies

3.1 DD Solver

DD Solver is a free Excel add-in (VBA-Visual Basic for
Applications) designed specifically to model and compare
in-vitro drug dissolution and release profiles. It includes
approximately 40 common empirical and semi-empirical
models, along with several model-independent comparison
methods, allowing users to fit, compare, and report
dissolution data without custom coding [,

a) Utilities of the software

e Performs non-linear regression to fit percentage of drug
released versus time to various models (zero- and first-
order, Higuchi, Hixson-Crowell, Weibull, Korsmeyer—
Peppas, etc.).

e Computes goodness-of-fit (GOF) metrics (R?, adjusted
R2, AIC, MSC), residual plots, and confidence intervals
(Cls) for parameters.

e Implements model-independent comparisons (fi, f,
Rescigno indices, multivariate distance) and bootstrap f>
approaches for highly variable data.

o Facilitates testing mechanistic hypotheses (e.g.,
diffusion vs. erosion) and quantification of model fit [°!,

b) Software inputs and outputs

e Input: Dissolution dataset (time points x replicate
percentage of drug released), optional weights/limits.

e Output: Best-fit parameter estimates, fitted curves,
residual diagnostics, model ranking tables, and
similarity metrics ready for reporting or publication [,

c) Applications in pharmaceutical sciences

e Mechanistic screening of candidate formulations
(identify the model that best describes release and
interpret parameters).

e Compare batches or strengths, determine initial in
vitro—in vivo correlation (IVIVC) candidates via
empirical fits.

e Support publications and regulatory submissions with
fitted parameters and statistical analyses.

e  Widely used in academia and by generic R&D groups
for dissolution modelling and f2/bootstrap comparisons;
cited in AAPS and DD Solver literature as a standard
tool for dissolution profile comparison I,

3.2 Design-Expert (Stat-Ease)

Design-Expert is a commercial design of experiments
(DOE) software package for planning, analysing, and
optimizing multifactor experiments, including screening
designs, factorials, response surface methodology (RSM),
mixture designs, and combined designs. It integrates
ANOVA (Analysis of Variance), regression diagnostics,
contour/response-surface  plotting, and  desirability
optimization into a streamlined workflow 12,

Utilities of the software

e Constructs optimal experimental matrices (2-level
factorial, fractional factorial, Box-Behnken, central
composite design [CCD], mixture designs).

e Fits polynomial response models and performs
ANOVA to identify significant main effects and
interactions.

e  Generates contour and 3D response-surface plots.

e Computes multi-response desirability to determine
factor settings that meet several specifications
simultaneously [3 151,
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Software inputs and outputs

e Input: Selected factors with defined ranges
(formulation/process  variables) and  measured
responses.

e Output: ANOVA tables, regression equations,
diagnostic plots, contour/response-surface

visualizations, optimum factor settings, and predicted
responses (with confidence intervals) (€1,

Applications in pharmaceutical sciences

e Screening excipients and process variables (binder
percentage, polymer level, compression force).

e Optimizing granulation and tableting parameters for
hardness, dissolution, and disintegration.

o Defining QbD design space and reducing experimental
runs compared with traditional OFAT (one-factor-at-a-
time) methods.

e Widely used across pharmaceutical formulation and
process R&D; published studies and vendor case
studies demonstrate optimization of wet granulation,
tablet coating, and continuous manufacturing variables.
Stat-Ease provides multiple case studies illustrating
industrial applications [*°],

3.3 Gastroplus (Simulations-Plus)

Gastro Plus is a commercial physiologically based
biopharmaceutics/pharmacokinetics (PBPK/PBBM)
simulation platform that mechanistically links in-vitro
dissolution, drug physicochemical properties (solubility,
dissociation constant pKa, permeability), formulation
attributes, and gastrointestinal (GI) physiology to predict in-
vivo absorption and systemic pharmacokinetics (maximum
plasma concentration Cmax, time to reach maximum plasma
concentration Tmax, area under the plasma concentration—
time curve AUC) across virtual populations and dosing
conditions (1,

https://www.pharmacyjournal.org

Utilities of the software

e Contains mechanistic Gl modules, including ACAT
(Advanced Compartmental Absorption and Transit) and
compartmental transit models.

e Includes solubilization and precipitation modules,
permeability/absorption models, first-pass metabolism,
and full PBPK capabilities.

e  Supports in vitro—in vivo correlation (IVIVC) building
and deconvolution, sensitivity analysis, virtual
bioequivalence (BE) simulations, and fed/fasted state
modelling.

e Users input in-vitro dissolution profiles, drug
properties, and formulation parameters, then calibrate
and verify models using any available in-vivo data.

Software inputs and outputs

e Inputs: Dissolution data, solubility versus pH, pKa,
partition coefficient (logP), particle size,
dose/formulation details, and physiological settings.

e Outputs: Predicted plasma concentration—time profiles,
fraction absorbed, sensitivity plots,
IVIVC/deconvolution results, and virtual BE statistics
for different populations or food states [4],

Applications in pharmaceutical sciences

e Selection of formulation strategies (immediate-release
vs. modified-release formulations).

e Prediction of the impact of particle size, coating, or
solubility changes on systemic exposure.

e Risk assessment (e.g., impact of slower dissolution on
drug absorption).

e Construction and verification of IVIVC for extended-
release (ER) products.

e Simulation of fed versus fasted state effects on
absorption (%151,

e Support for regulatory dossiers and justification for
reduced in-vivo testing.

Compound tab |

—

| Gut physiology tab

Dose number | r {

Absorption number

Dissolution number |

pKa table (Solubility) |

LogD vs. pH profile |

Permeability |

Dosage form |
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I Simulation &
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Parameter Sensitivity

Human fasted | Analysis
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Fig 3: Gastroplus Simulation Workflow

3.4 Matlab (Mathworks) — with Simbiology / Toolboxes
It is a high-level numerical computing platform and
language; with Sim Biology and other toolboxes it becomes
a flexible environment for building mechanistic PK/PD,

PBPK, systems pharmacology and release/distribution
models using ODE/PDE (Ordinary/Partial Differential
Equation Solvers) solvers, statistical toolboxes and
optimization algorithms (61,
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Utilities of software
Numerical solvers (ODE15s, PDE tools), optimization
(Isgcurvefit, fmincon), statistics & machine learning,
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Monte-Carlo/bootstrapping, and SimBiology’s graphical
model builder for PK/PD and compartmental model.

Fig 4: Detection of Tablet chipping using Neural networks

Users can code custom mechanistic release models
(diffusion, swelling, erosion), couple them to PBPK
compartments, and run parameter estimation or population
simulations. Detect Image Anomalies Using Explainable

Software inputs and outputs

One- Class Classification Neural Network” and involves
training an anomaly detector for visual inspection of tablet
images 1722,
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o
B
o |
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Biological responses

Drug discovery

e
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Optimized formulation

NN
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Modeling and
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Inputs: experimental data, model structure (equations or block diagram), initial parameter guesses; Outputs:
fitted parameter values, simulated concentration/time profiles, sensitivity and uncertainty analyses, figures and
exportable numerical results [20:21],

Fig 5: Mapping Inputs to Outputs in Pharmaceutical Research and Drug development using Al

Applications in Pharmaceutical sciences

Mechanistic modelling of matrix swelling/diffusion, linking
in-vitro dissolution to plasma PK via bespoke PBPK code or
Sim Biology models, Monte Carlo variability studies for
formulation robustness, and advanced statistics or ML
models for PAT (Process Analytical Technology) / QbD
(Quality by Design) pipelines. Large pharma (e.g., Pfizer)
use MATLAB + Sim Biology for model-based drug
development and PK/PD workflows 23],

MATLAB/Sim Biology is used in both industry and
academia for PBPK/PKPD/QSP (Physiologically Based
Pharmacokinetics / Pharmacokinetics/Pharmacodynamics /
Quantitative Systems Pharmacology) modelling; Pfizer and

others publish user stories on model-based decisions aided
by MATLAB workflows [3],

3.5 Pheq_Bootstrap / Bootf2bca (Bootstrap F2 Tools)

PhEq_bootstrap and Bootf2bca are software tools that
implement bootstrap (and bias-corrected accelerated —
BCa) methods to estimate the distribution and confidence
intervals of the dissolution similarity factor f;, addressing
the limitations of the standard f> when dissolution data are
highly variable. They allow reporting of 90% Cls (or other

percentile intervals) for f2 rather than a single point estimate
[24]
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Utilities of software

For a given test and reference dissolution dataset (usually n
> 12 units), the tools resample (with replacement) many
bootstrap datasets, compute f> for each replicate, then derive
bootstrap mean/median and percentile or BCa confidence
intervals; some implementations also calculate variance-
stabilized metrics or model-dependent comparisons (MSD)
to handle edge cases. This gives an uncertainty
quantification for similarity claims 2],

Software inputs and outputs

Inputs: raw unit-level dissolution data (timepoints and per-
unit percentage of drug dissolved), bootstrap settings (N
resamples), truncation rules; outputs: bootstrap f
distribution, point estimate(s), Lower and Upper Confidence
Interval (Cl) Bounds and decision criteria (e.g., lower 90%
CI > 50 — similarity) [,

Applications in Pharmaceutical sciences

During  generic  formulation  comparisons,  batch
comparability studies and regulatory submissions when
standard f> is unreliable due to high variability; supports
justifying biowaiver decisions or guiding formulation
endpoints by quantifying uncertainty. Regulatory guidance
(Food and Drug Administration/European Medicines
Agency) still references f> = 50 as similarity threshold but
explicitly recognizes limitations and alternative approaches
when variability is high B4,

Comparative studies and peer-review papers evaluating
bootstrapped f2 methods recommend
PhEq_bootstrap/Bootf2bca when variability is large;
reviewers of generic product dossiers increasingly expect

robust statistical treatment of f> where variability is an issue
26, 32]

3.6 Drug Flow (Al-Driven Platform)

Drug Flow is a cloud-based, Al-powered one-stop platform
designed to accelerate early-stage drug discovery by
integrating advanced machine learning algorithms with
traditional physics-based methods, making computational
tools accessible to non-experts in pharmaceutical research.

Utilities of software

Drug Flow streamlines workflows through modules for
molecular docking, Quantitative Structure Activity
Relationship modelling, de novo molecular generation,
ADMET (Absorption, Distribution, Metabolism, Excretion,
and Toxicity) prediction, and virtual screening, enabling
automated hit identification, lead optimization, and
comprehensive property assessment to reduce manual
experimentation and enhance innovation in drug design.

Software inputs and outputs

Experimental inputs include protein structures, provided as
Protein Data Bank (PDB) files or uploaded models, as well
as ligands, represented as Simplified Molecular Input Line
Entry System (SMILES) strings, MOL files, or manually
drawn chemical structures. Additional inputs comprise
chemical libraries, such as those from Enamine or Chem
Div, training datasets for quantitative structure-activity
relationship (QSAR) modelling, including molecular
fingerprints like extended-connectivity fingerprints of
diameter 4 (ECFP4) and molecular descriptors calculated
using RD Kit, reference fragments for molecule generation,
and definitions of binding sites on target proteins. The
computational pipeline outputs docking scores and poses,

https://www.pharmacyjournal.org

visualized using tools such as Mol*, absorption, distribution,
metabolism, excretion, and toxicity (ADMET) predictions
across 76 parameters presented in color-coded tables, QSAR
model metrics such as receiver operating characteristic area
under the curve (ROC-AUC) and coefficient of
determination (R?) along with predictions, generated or
filtered molecules ranked according to scaffold structures,
and results from virtual screening, including clustered
compounds and summarized molecular properties 4],

Applications in pharmaceutical sciences

Supports hit-to-lead optimization, toxicity forecasting, and
high-throughput virtual screening for novel therapeutics,
particularly in oncology and infectious diseases; used to
predict binding affinities, assess drug-likeness, and design
patient-specific candidates, minimizing failure rates in
preclinical pipelines.

3.7 Organoid Al Models (Al-Enabled Organoids)
Organoid Al models, or Al-Enabled Organoids, represent an
integrated framework combining 3D organoid cultures with
artificial intelligence (particularly machine learning and
deep learning) to mimic organ architecture and functions for
advanced biomedical modelling, overcoming limitations in
traditional 2D cultures and manual analyses.

Utilities of software

Facilitates rapid optimization of organoid construction via
Al-driven screening of matrices, growth factors, and stimuli;
automates multiscale image feature extraction for
morphology assessment; streamlines multi-omics integration
(genomics, proteomics) for data analysis; and enables
predictive modelling for drug responses and disease
progression, enhancing scalability and precision in tissue
engineering 1,

Software inputs and outputs

Experimental datasets include imaging data, such as bright-
field microscopy and immunofluorescence (IF) imaging, as
well as multi-omics profiles, including single-cell RNA
sequencing (scRNA-seq) for transcriptomic analysis and
metabolomics for metabolic profiling. These datasets also
incorporate culture conditions, including variations in
growth factors such as Wingless-related integration site
proteins (WNTSs) and Bone morphogenetic proteins (BMPs),
as well as environmental parameters like temperature.
External stimuli, such as mechanical and electrical
stimulation, are also considered. Historical experimental
data are used to train machine learning (ML) models,
including convolutional neural networks (CNNs) and
generative adversarial networks (GANSs). The pipeline
generates outputs including optimized experimental
protocols, such as recommended matrix compositions and
cell type ratios, quantified features such as porosity, cell
counts, and spatial heterogeneity, integrated omics insights
including gene correlations and biomarkers, and predictive
metrics such as neurotoxicity scores and drug efficacy
rankings, accompanied by confidence intervals (CI) to
indicate the statistical reliability of predictions.

Applications in pharmaceutical sciences

Revolutionizes drug screening and toxicity testing using
patient-derived organoids for cancers (e.g., colorectal) and
neurodegenerative diseases; supports personalized medicine
by modelling disease mechanisms, identifying targets, and
evaluating therapeutics in human-relevant systems, reducing
animal testing and accelerating clinical translation [26],

~290~


https://www.pharmacyjournal.org/

International Journal of Pharmacy and Pharmaceutical Science

https://www.pharmacyjournal.org

Table 1: Al Tools used in in-vitro studies of Solid dosage forms

researchers, Excel add-in

similarity factor (f2), bootstrapped f2

Software Founderég;rmpany & Application Product
Computational . Lo Aspirin floating tablets (571
- Modelling & comparing in-vitro drug - X ; . [38]
DD Solver pharmaceutics dissolution profiles; Kinetic model fitting; Famotidine gastro-retentive floating tablets

Griseofulvin tablets [3°

(VBA), ~2010 Montelukast tablets [27-30]
Desian-Expert Stat-Ease Inc., 1980s Design of Experiments (DoE) for Telmisartan nanosuspensions; Oral solid dosage
9 P (v11 cited) formulation & process optimization form optimization [

Simulations Plus Inc.,

PBPK / PBBM simulations: IVIVC, virtual

Metoprolol extended-release mini-tablets [0

~2022

QSAR modelling, de novo generation,
ADMET prediction, and virtual screening

Gastro Plus late 1990s bioequivalence, fed/fasted state prediction Roche & BMS. (Brlstol-l\{lye[ras7 i(}qmbb)
formulation strategies 3
MATLAB SMaéhV\llorks, 15:34 . M;ﬁ??”'?ﬁ PK/ PCD <I§ d'.SSO:Ut.'on . Pfizer model-based drug development
(SimBiology) (SimBiology toolbox: modeling; Monte-Carlo simulations; integrating dissolution & PBPK 31
2000s) parameter estimation
PhEqg_bootstrap / | Academic development, lzioszgsltlj?i% f\?;?;ﬁ?lllst ??relﬁjzttlgre lrf,tizrx;‘:\,fgf Generic product dissolution comparisons (test vs
Bootf2bca 2000s sug;’)or? y reference) 4243
- Al-driven platform for early-stage drug Hit-to-lead optimization in oncology (e.g.,
Carbon silicon Al discovery; integrates molecular dockin kinase inhibitors); toxicity forecasting for
DrugFlow Technology Co., Ltd., Y g 9 X Yy 9

infectious diseases (e.g., COVID-19 repurposed
drugs) 14

Organoid Al Models
(Al-Enabled
Organoids)

Long Bai et al. (Shanghai
University)2024

Al integration for organoid construction,
multiscale image analysis, multi-omics data
processing, and preclinical evaluation;
optimizes matrix gels, cell culture, and
disease modelling

Brain organoids for neurotoxicity prediction
(e.g., Parkinson's disease models); kidney
organoids for ciliopathic renal phenotype

validation; colorectal cancer organoids for drug
efficacy testing [*]

4. Future Outlooks

The future of in-vitro characterization is shifting from
physical lab work to a predictive digital ecosystem, where
Al will become the backbone of formulation science ™8,
This transformation will be driven by the creation of "digital
twins" for dosage forms, allowing for virtual simulation and
optimization before any physical product is made. Integrated
with Process Analytical Technology (PAT), Al will enable
real-time quality control during manufacturing, while
advanced models like Organoid Al will offer more human-
relevant preclinical data, reducing animal testing [“1.
Ultimately, this convergence of data-driven intelligence and
pharmaceutical innovation will accelerate the development
of personalized therapies through technologies like 3D-
printed medicines, revolutionizing how solid dosage forms
are designed, tested, and delivered to patients €1,

5. Conclusion

Artificial Intelligence (Al) has emerged as a transformative
force in pharmaceutical sciences, particularly in the in vitro
evaluation of solid dosage forms ranging from granules,
conventional and orally disintegrating tablets, solid
dispersions, and capsules to advanced 3D-printed drug
delivery systems. By leveraging models such as Artificial
Neural Networks (ANNs), Convolutional Neural Networks
(CNNs), Support Vector Machines (SVMs), and Deep
Neural Networks (DNNs), Al has demonstrated remarkable
accuracy in predicting dissolution profiles, detecting
structural defects, ensuring content uniformity, forecasting
stability, and enabling real-time monitoring through
spectroscopic tools like Near-Infrared (NIR) and Raman
spectroscopy. Future directions point toward the integration
of Al with Process Analytical Technology (PAT), the
creation of digital twins for dosage forms, and the
personalization of therapies through 3D-printed medicines,
signalling a shift where predictive modelling may replace
much of conventional in vitro testing. While regulatory
acceptance is still evolving, Al is rapidly moving from a

supportive role to becoming the backbone of formulation
science, driving real-time quality control, accelerating
optimization, and enabling patient-specific therapies.
Ultimately, by bridging data-driven intelligence with
pharmaceutical innovation, Al is set to revolutionize the
development, testing, and optimization of solid dosage
forms, shaping the future landscape of drug delivery and
therapeutic performance.
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