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Abstract 

A solid dosage form is a therapeutic formulation in which the active pharmaceutical ingredient and 

excipients are delivered in a stable solid state (e.g. tablets, capsules, powders, granules). These forms 

are widely used because they are relatively easy to manufacture, transport, handle, store, and administer 

and they tend to improve patient compliance due to convenience and precise dosing. In vitro 

characterization of solid dosage form refers to laboratory-based testing of pharmaceutical products like 

tablets and capsules to assess their physical, chemical and biopharmaceutical properties. These tests are 

critical for ensuring product quality, stability and performance prior to in vivo studies. However, 

conventional in vitro methods often face limitations including lack of accuracy, limited precision, poor 

reproducibility of in -vivo behaviour which can hinder efficient formulation development and quality 

control. Artificial Intelligence [AI] offers transformative potential by optimizing and predicting in vitro 

performance of solid dosage forms. AI models can quickly analyse large formulation and test datasets, 

find patterns and predict outcomes like dissolution profiles or bioavailability with high accuracy. 

Various AI tools and techniques include Machine Learning, Deep Learning, Cheminformatics and 

QSAR modelling. This review article elaborates on the fundamentals of in vitro characterization of 

solid dosage forms, highlights its limitations, explores the integration of Artificial Intelligence in 

addressing these challenges and discusses the tools and technologies that are shaping the future of 

pharmaceutical formulation and testing. 

 
Keywords: AI tools, PBPK/PKPD/QSP modelling, regulatory guidance, design of experiments, 

organoid AI, In vitro dissolution profile 

 

1. Introduction 

Artificial Intelligence (AI) is a promising strategy for enhancing pharmaceutical product 

development and has proven to be a versatile tool with algorithms applicable to solid dosage 

forms such as tablets, capsules and powders. It plays a significant role in drug discovery, 

formulation design, manufacturing, quality control, clinical trial management and drug 

delivery [1]. By definition, AI is a computational process that simulates human intelligence 

through machines, a concept first introduced in 1956 at a conference led by Marvin Minsky 

and John McCarthy. A typical AI workflow involves four essential steps: data collection and 

preparation, AI modelling, simulation and testing and final deployment. Deep Learning 

(DL), a more advanced subfield of ML (Machine Learning), is based on layered algorithms 

known as Artificial Neural Networks (ANNs) [2]. These networks, inspired by the biological 

neuron structure of the human brain, demonstrate superior computational power and 

predictive accuracy compared with conventional ML models. Solid dosage forms typically 

consist of one or more APIs combined with suitable excipients, including binders, 

disintegrants, stabilizers, antioxidants and granulating agents. The development of solid 

dosage forms is a highly complex process that requires an in-depth understanding of 

physicochemical characteristics and pharmacokinetic/pharmacodynamic (PK/PD) profiles. It 

generally involves several stages, such as preformulation studies, product development and 

large-scale manufacturing [3, 4]. 
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Fig 1: Artificial Intelligence in drug development 

 

2. Challenges in conventional in-vitro methods of solid 

dosage forms 

A drug's effectiveness in oral therapy relies primarily on its 

solubility and permeability, which govern absorption, 

bioavailability and therapeutic outcome. For solid dosage 

forms, dissolution in gastrointestinal fluids is the critical 

first step toward absorption. Insufficient solubility often 

leads to poor or variable bioavailability [5]. Drugs that are 

highly hydrophilic or structurally bulky face challenges in 

crossing the intestinal epithelium. It is estimated that about 

40% of marketed drugs and nearly 90% of pipeline 

candidates exhibit poor aqueous solubility. These limitations 

create significant hurdles in developing efficient oral solid 

dosage forms. The traditional trial-and-error strategy for 

formulation development is therefore slow, resource-

intensive, and inefficient. Developing PDDS and accurately 

predicting their release profiles is challenging because of 

their complex structures and multiple influencing factors, 

while conventional mathematical and empirical methods fall 

short in addressing these complexities [6]. In vivo 

bioequivalence (BE) studies are essential to establish 

equivalence between generic and innovator products, but for 

highly variable drugs, direct testing in subjects often carries 

a high risk of failure [7]. 

 

3. AI tools for in vitro characterization  

Growing collaborations between artificial intelligence (AI)-

driven and machine learning (ML)-focused organizations 

and pharmaceutical companies are significantly streamlining 

and advancing the drug development process (Jiang). In this 

study, the following software tools were employed: DD 

Solver (Dissolution Data Analysis Software Solver, an 

Excel add-in for both model-dependent and model-

independent dissolution analysis), Design-Expert (for 

experimental design and optimization), Gastro Plus (for 

physiologically based pharmacokinetic and pharmacokinetic 

simulations), and MATLAB (Matrix Laboratory, a high-

level computing environment for data analysis, modelling, 

and simulation) [8]. 

Dissolution profile comparison was performed using the 

similarity factor (f₂), expected similarity factor (f̂₂, exp), and 

bias-corrected similarity factor (f̂₂,bc). The f₂ factor 

quantifies the similarity between test and reference profiles, 

with values of 50–100 indicating equivalence. The f̂₂, exp 

provides an adjusted estimate accounting for variability 

across multiple dissolution tests, while f̂₂, bc incorporates 

bootstrapping methods to correct for bias in highly variable 

data. These parameters were calculated using DD Solver, 

Bootf2BCA (Bootstrap f₂ Bias-Corrected and Accelerated, a 

resampling-based method for reliable f₂ estimation), and 

PhEq_bootstrap (Pharmacokinetic/Pharmaceutical 

Equivalence Bootstrap, a tool for assessing equivalence of 

dissolution profiles with variability considerations). DD 

Solver was further applied for model-dependent kinetic 

analyses [9].  
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Fig 2: Drug product development in collaboration with AI and pharmaceutical companies 

 

3.1 DD Solver 

DD Solver is a free Excel add-in (VBA-Visual Basic for 

Applications) designed specifically to model and compare 

in-vitro drug dissolution and release profiles. It includes 

approximately 40 common empirical and semi-empirical 

models, along with several model-independent comparison 

methods, allowing users to fit, compare, and report 

dissolution data without custom coding [10]. 

 

a) Utilities of the software 

 Performs non-linear regression to fit percentage of drug 

released versus time to various models (zero- and first-

order, Higuchi, Hixson-Crowell, Weibull, Korsmeyer–

Peppas, etc.). 

 Computes goodness-of-fit (GOF) metrics (R², adjusted 

R², AIC, MSC), residual plots, and confidence intervals 

(CIs) for parameters. 

 Implements model-independent comparisons (f₁, f₂, 

Rescigno indices, multivariate distance) and bootstrap f₂ 

approaches for highly variable data. 

 Facilitates testing mechanistic hypotheses (e.g., 

diffusion vs. erosion) and quantification of model fit [9]. 

 

b) Software inputs and outputs 

 Input: Dissolution dataset (time points × replicate 

percentage of drug released), optional weights/limits. 

 Output: Best-fit parameter estimates, fitted curves, 

residual diagnostics, model ranking tables, and 

similarity metrics ready for reporting or publication [8]. 

 

c) Applications in pharmaceutical sciences 

 Mechanistic screening of candidate formulations 

(identify the model that best describes release and 

interpret parameters). 

 Compare batches or strengths, determine initial in 

vitro–in vivo correlation (IVIVC) candidates via 

empirical fits. 

 Support publications and regulatory submissions with 

fitted parameters and statistical analyses. 

 Widely used in academia and by generic R&D groups 

for dissolution modelling and f₂/bootstrap comparisons; 

cited in AAPS and DD Solver literature as a standard 

tool for dissolution profile comparison [9]. 

 

3.2 Design-Expert (Stat-Ease) 

Design-Expert is a commercial design of experiments 

(DOE) software package for planning, analysing, and 

optimizing multifactor experiments, including screening 

designs, factorials, response surface methodology (RSM), 

mixture designs, and combined designs. It integrates 

ANOVA (Analysis of Variance), regression diagnostics, 

contour/response-surface plotting, and desirability 

optimization into a streamlined workflow [12]. 

 

Utilities of the software 

 Constructs optimal experimental matrices (2-level 

factorial, fractional factorial, Box-Behnken, central 

composite design [CCD], mixture designs). 

 Fits polynomial response models and performs 

ANOVA to identify significant main effects and 

interactions. 

 Generates contour and 3D response-surface plots. 

 Computes multi-response desirability to determine 

factor settings that meet several specifications 

simultaneously [13, 15]. 
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Software inputs and outputs 

 Input: Selected factors with defined ranges 

(formulation/process variables) and measured 

responses. 

 Output: ANOVA tables, regression equations, 

diagnostic plots, contour/response-surface 

visualizations, optimum factor settings, and predicted 

responses (with confidence intervals) [18]. 

 

Applications in pharmaceutical sciences 

 Screening excipients and process variables (binder 

percentage, polymer level, compression force). 

 Optimizing granulation and tableting parameters for 

hardness, dissolution, and disintegration. 

 Defining QbD design space and reducing experimental 

runs compared with traditional OFAT (one-factor-at-a-

time) methods. 

 Widely used across pharmaceutical formulation and 

process R&D; published studies and vendor case 

studies demonstrate optimization of wet granulation, 

tablet coating, and continuous manufacturing variables. 

Stat-Ease provides multiple case studies illustrating 

industrial applications [19]. 

 

3.3 Gastroplus (Simulations-Plus) 

Gastro Plus is a commercial physiologically based 

biopharmaceutics/pharmacokinetics (PBPK/PBBM) 

simulation platform that mechanistically links in-vitro 

dissolution, drug physicochemical properties (solubility, 

dissociation constant pKa, permeability), formulation 

attributes, and gastrointestinal (GI) physiology to predict in-

vivo absorption and systemic pharmacokinetics (maximum 

plasma concentration Cmax, time to reach maximum plasma 

concentration Tmax, area under the plasma concentration–

time curve AUC) across virtual populations and dosing 

conditions [11]. 

Utilities of the software 

 Contains mechanistic GI modules, including ACAT 
(Advanced Compartmental Absorption and Transit) and 
compartmental transit models. 

 Includes solubilization and precipitation modules, 
permeability/absorption models, first-pass metabolism, 
and full PBPK capabilities. 

 Supports in vitro–in vivo correlation (IVIVC) building 
and deconvolution, sensitivity analysis, virtual 
bioequivalence (BE) simulations, and fed/fasted state 
modelling. 

 Users input in-vitro dissolution profiles, drug 
properties, and formulation parameters, then calibrate 
and verify models using any available in-vivo data. 

 

Software inputs and outputs 

 Inputs: Dissolution data, solubility versus pH, pKa, 
partition coefficient (logP), particle size, 
dose/formulation details, and physiological settings. 

 Outputs: Predicted plasma concentration–time profiles, 
fraction absorbed, sensitivity plots, 
IVIVC/deconvolution results, and virtual BE statistics 
for different populations or food states [14]. 

 

Applications in pharmaceutical sciences 

 Selection of formulation strategies (immediate-release 
vs. modified-release formulations). 

 Prediction of the impact of particle size, coating, or 
solubility changes on systemic exposure. 

 Risk assessment (e.g., impact of slower dissolution on 
drug absorption). 

 Construction and verification of IVIVC for extended-
release (ER) products. 

 Simulation of fed versus fasted state effects on 
absorption [11, 15]. 

 Support for regulatory dossiers and justification for 
reduced in-vivo testing. 

 

 
 

Fig 3: Gastroplus Simulation Workflow 
 

3.4 Matlab (Mathworks) — with Simbiology / Toolboxes 
It is a high-level numerical computing platform and 

language; with Sim Biology and other toolboxes it becomes 

a flexible environment for building mechanistic PK/PD, 

PBPK, systems pharmacology and release/distribution 

models using ODE/PDE (Ordinary/Partial Differential 

Equation Solvers) solvers, statistical toolboxes and 

optimization algorithms [16].  
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Utilities of software 

Numerical solvers (ODE15s, PDE tools), optimization 

(lsqcurvefit, fmincon), statistics & machine learning, 

Monte-Carlo/bootstrapping, and SimBiology’s graphical 

model builder for PK/PD and compartmental model. 

 

 

 
 

Fig 4: Detection of Tablet chipping using Neural networks 

 

Users can code custom mechanistic release models 

(diffusion, swelling, erosion), couple them to PBPK 

compartments, and run parameter estimation or population 

simulations. Detect Image Anomalies Using Explainable 

One- Class Classification Neural Network” and involves 

training an anomaly detector for visual inspection of tablet 

images [17,22]. 

 

Software inputs and outputs 

 

 
 

Inputs: experimental data, model structure (equations or block diagram), initial parameter guesses; Outputs: 

fitted parameter values, simulated concentration/time profiles, sensitivity and uncertainty analyses, figures and 

exportable numerical results [20,21]. 
 

Fig 5: Mapping Inputs to Outputs in Pharmaceutical Research and Drug development using AI 

 

Applications in Pharmaceutical sciences 

Mechanistic modelling of matrix swelling/diffusion, linking 

in-vitro dissolution to plasma PK via bespoke PBPK code or 

Sim Biology models, Monte Carlo variability studies for 

formulation robustness, and advanced statistics or ML 

models for PAT (Process Analytical Technology) / QbD 

(Quality by Design) pipelines. Large pharma (e.g., Pfizer) 

use MATLAB + Sim Biology for model-based drug 

development and PK/PD workflows [23].  

MATLAB/Sim Biology is used in both industry and 

academia for PBPK/PKPD/QSP (Physiologically Based 

Pharmacokinetics / Pharmacokinetics/Pharmacodynamics / 

Quantitative Systems Pharmacology) modelling; Pfizer and 

others publish user stories on model-based decisions aided 

by MATLAB workflows [36].  

 

3.5 Pheq_Bootstrap / Bootf2bca (Bootstrap F₂ Tools) 
PhEq_bootstrap and Bootf2bca are software tools that 

implement bootstrap (and bias-corrected accelerated — 

BCa) methods to estimate the distribution and confidence 

intervals of the dissolution similarity factor f₂, addressing 

the limitations of the standard f₂ when dissolution data are 

highly variable. They allow reporting of 90% CIs (or other 

percentile intervals) for f₂ rather than a single point estimate 
[24].  
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Utilities of software 

For a given test and reference dissolution dataset (usually n 

≥ 12 units), the tools resample (with replacement) many 

bootstrap datasets, compute f₂ for each replicate, then derive 

bootstrap mean/median and percentile or BCa confidence 

intervals; some implementations also calculate variance-

stabilized metrics or model-dependent comparisons (MSD) 

to handle edge cases. This gives an uncertainty 

quantification for similarity claims [25].  

 

Software inputs and outputs 

Inputs: raw unit-level dissolution data (timepoints and per-

unit percentage of drug dissolved), bootstrap settings (N 

resamples), truncation rules; outputs: bootstrap f₂ 

distribution, point estimate(s), Lower and Upper Confidence 

Interval (CI) Bounds and decision criteria (e.g., lower 90% 

CI ≥ 50 → similarity) [33].  

 
Applications in Pharmaceutical sciences 
During generic formulation comparisons, batch 
comparability studies and regulatory submissions when 
standard f₂ is unreliable due to high variability; supports 
justifying biowaiver decisions or guiding formulation 
endpoints by quantifying uncertainty. Regulatory guidance 
(Food and Drug Administration/European Medicines 
Agency) still references f₂ = 50 as similarity threshold but 
explicitly recognizes limitations and alternative approaches 
when variability is high [34].  
Comparative studies and peer-review papers evaluating 
bootstrapped f₂ methods recommend 
PhEq_bootstrap/Bootf2bca when variability is large; 
reviewers of generic product dossiers increasingly expect 
robust statistical treatment of f₂ where variability is an issue 
[26, 32].  
 
3.6 Drug Flow (AI-Driven Platform) 
Drug Flow is a cloud-based, AI-powered one-stop platform 
designed to accelerate early-stage drug discovery by 
integrating advanced machine learning algorithms with 
traditional physics-based methods, making computational 
tools accessible to non-experts in pharmaceutical research. 
 
Utilities of software  
Drug Flow streamlines workflows through modules for 
molecular docking, Quantitative Structure Activity 
Relationship modelling, de novo molecular generation, 
ADMET (Absorption, Distribution, Metabolism, Excretion, 
and Toxicity) prediction, and virtual screening, enabling 
automated hit identification, lead optimization, and 
comprehensive property assessment to reduce manual 
experimentation and enhance innovation in drug design. 
 
Software inputs and outputs 
 Experimental inputs include protein structures, provided as 
Protein Data Bank (PDB) files or uploaded models, as well 
as ligands, represented as Simplified Molecular Input Line 
Entry System (SMILES) strings, MOL files, or manually 
drawn chemical structures. Additional inputs comprise 
chemical libraries, such as those from Enamine or Chem 
Div, training datasets for quantitative structure–activity 
relationship (QSAR) modelling, including molecular 
fingerprints like extended-connectivity fingerprints of 
diameter 4 (ECFP4) and molecular descriptors calculated 
using RD Kit, reference fragments for molecule generation, 
and definitions of binding sites on target proteins. The 
computational pipeline outputs docking scores and poses, 

visualized using tools such as Mol*, absorption, distribution, 
metabolism, excretion, and toxicity (ADMET) predictions 
across 76 parameters presented in color-coded tables, QSAR 
model metrics such as receiver operating characteristic area 
under the curve (ROC-AUC) and coefficient of 
determination (R²) along with predictions, generated or 
filtered molecules ranked according to scaffold structures, 
and results from virtual screening, including clustered 
compounds and summarized molecular properties [44]. 
 
Applications in pharmaceutical sciences  
Supports hit-to-lead optimization, toxicity forecasting, and 
high-throughput virtual screening for novel therapeutics, 
particularly in oncology and infectious diseases; used to 
predict binding affinities, assess drug-likeness, and design 
patient-specific candidates, minimizing failure rates in 
preclinical pipelines. 
 
3.7 Organoid AI Models (AI-Enabled Organoids) 
Organoid AI models, or AI-Enabled Organoids, represent an 
integrated framework combining 3D organoid cultures with 
artificial intelligence (particularly machine learning and 
deep learning) to mimic organ architecture and functions for 
advanced biomedical modelling, overcoming limitations in 
traditional 2D cultures and manual analyses. 
 
Utilities of software  
Facilitates rapid optimization of organoid construction via 
AI-driven screening of matrices, growth factors, and stimuli; 
automates multiscale image feature extraction for 
morphology assessment; streamlines multi-omics integration 
(genomics, proteomics) for data analysis; and enables 
predictive modelling for drug responses and disease 
progression, enhancing scalability and precision in tissue 
engineering [45]. 
 
Software inputs and outputs  
Experimental datasets include imaging data, such as bright-
field microscopy and immunofluorescence (IF) imaging, as 
well as multi-omics profiles, including single-cell RNA 
sequencing (scRNA-seq) for transcriptomic analysis and 
metabolomics for metabolic profiling. These datasets also 
incorporate culture conditions, including variations in 
growth factors such as Wingless-related integration site 
proteins (WNTs) and Bone morphogenetic proteins (BMPs), 
as well as environmental parameters like temperature. 
External stimuli, such as mechanical and electrical 
stimulation, are also considered. Historical experimental 
data are used to train machine learning (ML) models, 
including convolutional neural networks (CNNs) and 
generative adversarial networks (GANs). The pipeline 
generates outputs including optimized experimental 
protocols, such as recommended matrix compositions and 
cell type ratios, quantified features such as porosity, cell 
counts, and spatial heterogeneity, integrated omics insights 
including gene correlations and biomarkers, and predictive 
metrics such as neurotoxicity scores and drug efficacy 
rankings, accompanied by confidence intervals (CI) to 
indicate the statistical reliability of predictions. 
 
Applications in pharmaceutical sciences 
Revolutionizes drug screening and toxicity testing using 
patient-derived organoids for cancers (e.g., colorectal) and 
neurodegenerative diseases; supports personalized medicine 
by modelling disease mechanisms, identifying targets, and 
evaluating therapeutics in human-relevant systems, reducing 
animal testing and accelerating clinical translation [26]. 
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Table 1: AI Tools used in in-vitro studies of Solid dosage forms 
 

Software 
Founder / Company & 

Year 
Application Product  

DD Solver 

Computational 

pharmaceutics 

researchers, Excel add-in 

(VBA), ~2010 

Modelling & comparing in-vitro drug 

dissolution profiles; kinetic model fitting; 

similarity factor (f₂), bootstrapped f₂ 

Aspirin floating tablets [37]  

Famotidine gastro-retentive floating tablets [38] 

Griseofulvin tablets [39]  

Montelukast tablets [27-30] 

Design-Expert 
Stat-Ease Inc., 1980s 

(v11 cited) 

Design of Experiments (DoE) for 

formulation & process optimization 

Telmisartan nanosuspensions; Oral solid dosage 

form optimization [35] 

Gastro Plus 
Simulations Plus Inc., 

late 1990s 

PBPK / PBBM simulations: IVIVC, virtual 

bioequivalence, fed/fasted state prediction 

Metoprolol extended-release mini-tablets [40] 

Roche & BMS (Bristol-Myers Squibb) 

formulation strategies [37,41] 

MATLAB 

(SimBiology) 

MathWorks, 1984 

(SimBiology toolbox: 

2000s) 

Mechanistic PK/PD & dissolution 

modelling; Monte-Carlo simulations; 

parameter estimation 

Pfizer model-based drug development 

integrating dissolution & PBPK [31] 

PhEq_bootstrap / 

Bootf2bca 

Academic development, 

2000s 

Bootstrap f₂ analysis; confidence interval for 

dissolution variability; regulatory biowaiver 

support 

Generic product dissolution comparisons (test vs 

reference) [42,43] 

DrugFlow 

Carbon silicon AI 

Technology Co., Ltd., 

~2022 

AI-driven platform for early-stage drug 

discovery; integrates molecular docking, 

QSAR modelling, de novo generation, 

ADMET prediction, and virtual screening 

Hit-to-lead optimization in oncology (e.g., 

kinase inhibitors); toxicity forecasting for 

infectious diseases (e.g., COVID-19 repurposed 

drugs) [44] 

Organoid AI Models 

(AI-Enabled 

Organoids) 

Long Bai et al. (Shanghai 

University)2024 

AI integration for organoid construction, 

multiscale image analysis, multi-omics data 

processing, and preclinical evaluation; 

optimizes matrix gels, cell culture, and 

disease modelling 

Brain organoids for neurotoxicity prediction 

(e.g., Parkinson's disease models); kidney 

organoids for ciliopathic renal phenotype 

validation; colorectal cancer organoids for drug 

efficacy testing [45] 

 

4. Future Outlooks 

The future of in-vitro characterization is shifting from 

physical lab work to a predictive digital ecosystem, where 

AI will become the backbone of formulation science [46]. 

This transformation will be driven by the creation of "digital 

twins" for dosage forms, allowing for virtual simulation and 

optimization before any physical product is made. Integrated 

with Process Analytical Technology (PAT), AI will enable 

real-time quality control during manufacturing, while 

advanced models like Organoid AI will offer more human-

relevant preclinical data, reducing animal testing [47]. 

Ultimately, this convergence of data-driven intelligence and 

pharmaceutical innovation will accelerate the development 

of personalized therapies through technologies like 3D-

printed medicines, revolutionizing how solid dosage forms 

are designed, tested, and delivered to patients [48]. 

 

5. Conclusion 

Artificial Intelligence (AI) has emerged as a transformative 

force in pharmaceutical sciences, particularly in the in vitro 

evaluation of solid dosage forms ranging from granules, 

conventional and orally disintegrating tablets, solid 

dispersions, and capsules to advanced 3D-printed drug 

delivery systems. By leveraging models such as Artificial 

Neural Networks (ANNs), Convolutional Neural Networks 

(CNNs), Support Vector Machines (SVMs), and Deep 

Neural Networks (DNNs), AI has demonstrated remarkable 

accuracy in predicting dissolution profiles, detecting 

structural defects, ensuring content uniformity, forecasting 

stability, and enabling real-time monitoring through 

spectroscopic tools like Near-Infrared (NIR) and Raman 

spectroscopy. Future directions point toward the integration 

of AI with Process Analytical Technology (PAT), the 

creation of digital twins for dosage forms, and the 

personalization of therapies through 3D-printed medicines, 

signalling a shift where predictive modelling may replace 

much of conventional in vitro testing. While regulatory 

acceptance is still evolving, AI is rapidly moving from a 

supportive role to becoming the backbone of formulation 

science, driving real-time quality control, accelerating 

optimization, and enabling patient-specific therapies. 

Ultimately, by bridging data-driven intelligence with 

pharmaceutical innovation, AI is set to revolutionize the 

development, testing, and optimization of solid dosage 

forms, shaping the future landscape of drug delivery and 

therapeutic performance. 
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